
Analysis and manipulation of atomic and
molecular collisions using laser light

Von der
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Universiẗat Hannover

zur Erlangung des Grades
Doktor der Naturwissenschaften

Dr. rer. nat.
genehmigte Dissertation

von
Dipl.-Phys. Andŕe Grimpe
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Abstract

Optical collisions in a crossed beam experiment are examined for the atomic collision
pairs LiHe, LiNe, NaNe. Differential cross sections are measured in order to probe the
quallity of quantum chemical calculated and spectroscopical determined molecular po-
tentials. The linear polarization of the excitation laser is used to manipulate the contrast
of the differential cross sections for NaNe. Using elliptical polarized light total control
over the angular position and the contrast of the interference pattern is demonstrated.
Differential cross sections for the collision pairs LiH� and LiD� show a pronounced
oscillatory structure, which for the first time is observed for atom-molecule optical
collisions.

Key words: optical collisions, molecular potentials, control of atomic collisions

Optische Stöße der atomare Stoßpaare LiHe, LiNe, NaNe werden in einem Experiment
mit gekreuzten Teilchenstrahlen untersucht. Differentielle Wirkungsquerschnitte wer-
den gemessen um die Qualität von quantenchemisch berechneten und spetroskopisch
bestimmten Molekülpotentialen zu testen. Die lineare Polarisation des Anregungsla-
sers wird dazu benutzt den Kontrast der differentiellen Wirkungsquerschnitte von Na-
Ne zu manipulieren. Die totale Kontrolle über die Winkelposition und den Kontrast
der Interferenzstruktur wird durch die Benutzung von elliptisch polarisiertem Laser-
licht demonstriert. Differentielle Wirkungsquerschnitte der Stoßpaare LiH� and LiD�

zeigen eine deutliche Oszillationsstruktur, welche das erste Mal für Atom-Molekül
Stöße beobachtet wird.

Schlagworte: optische Stöße, Molekülpotentiale, Kontrolle atomarer Stöße
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Introduction

The perceptions about the structure and inner nature of matter have changed through
the history of philosophy and science. The idea of undestroyable particles called atoms
first appeared in Greece in the fifth century B.C. by the philosopher Demokrit. First
empirical and theoretical research during the 19th and the beginning of the 20th cen-
tury by Dalton, Bolzmann, Einstein and Rutherford have confirmed the existence of
the atoms and molecules. Over the years the atomic and molecular models have been
more and more refined by a wide spread of experimental and theoretical methods.
Collisions between atoms, molecules, electrons and ions determine the characteristics
of many parts of the environment and experimental physical systems, e.g. chemical
reactions, plasmas, like in the outer atmosphere of the earth and of stars, fusion ex-
periments, laser media, combustions and the formation of a Bose Einstein condensate.
Since Rutherfords experiment the study and analysis of collisions by scattering experi-
ments is an often used approach to understand the features ofatoms and molecules and
their interactions. In conventional crossed beams scattering experiments with differen-
tial detection the collisional particles are prepared in well known quantum mechanical
states and detected state-selective. But the final analysisafter the collisional process
delivers only indirect information about the collision. The process itself remains un-
controlled and unobserved. The examination of the impact broadening of spectral lines
is another widespread used tool to investigate the properties of atomic and molecular
interactions. The inherent process of broadening relies onoptical transitions during
collisions [1, 2, 3]. Accordingly it is possible to intervene directly in the collision pro-
cess by an optical excitation:

� � � � ��� �� ��� 	 � ��� �� ��� 	
 �� �
 � �
(1)

A is a projectile and B a target of an atom-atom or atom-molecule collision. The ex-
citation photon

���
is detuned from the resonance of the free projectile atom. Thus,

an optical excitation can only occur during the collision. The described collisions with
optical excitation are called optical collisions. Opticalcollision experiments are done
predominantly in gas cells [4, 5, 6, 7] . The results of the measurements just refer to a
statistic ensemble of the collision particles. The signal is averaged over the scattering
angles and the whole distribution of collision energies. The averaging again yields on-
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ly indirect information about the collision process.
The presented experiments are a combination of both methods. Optical collisions are
investigated in a crossed beams experiment with a differential detection scheme. This
creates the possibility to observe and manipulate collisional particles in prepared quan-
tum states by optical transitions. The first successful experimental realization was re-
ached in 1994 [8]. The following intensive studies of Na-rare gas and Na-molecule
optical collisions lead to new perceptions about the collision processes [9, 10, 11, 12].
The enhancement to other collisional systems like KAr and CaAr was very fertile
[13, 14].
Differential cross section of atom-atom optical collisions have a oscillatory structure.
These Stueckelberg oscillations [15] result from a coherent superposition of quantum-
mechanical undistinguishable pathways. The analysis and comparison of experimental
and theoretical determined differential cross sections opens the chance to probe and
improve interatomic potentials [13]. The knowledge of molecular potentials is crucial
for many applications. The accuracy of quantum chemical determined potentials is in
the range of 10 cm�

�
to 100 cm�

�
. Spectroscopic examinations [16, 17] allow to de-

termine attractive parts of potential curves with a uncertainty up to 0.03 cm�
�

but are
relatively insensitive for repulsive curves.
The optical collisions of the following collisional systems:

�� ��� 	 � � � ��� �� �� ��	 	 � �

(2)

� ��� 	 � 
 � ��� �� 
� ��	 	 � 


with X = Ne, He, H�, D� are studied in this work.
By comparing experimental and theoretical determined differential cross sections of
LiHe and LiNe the accuracies of calculated theoretical potentials by Staemmler [18],
Czuchaj [19] (both LiHe) and Kerner [20] (LiNe) are probed.
The differential cross sections of atom-molecule collisions usually show no oscillati-
ons. The thermal molecules are in a widespread variety of vibrational and rotational
states. This averages out the oscillatory structure. Differential cross sections of LiH�

and LiD� are measured and compared with theoretical determined ones. The idea is
to use H� and D� as molecular targets hoping that because of their huge rotational
quantums the main fraction of both is in their rotational ground state causing a visible
oscillatory structure of their differential cross section.
The attractive part of an ab intio calculated theoretical A

��
potential [20] is probed for

the NaNe system using negative detuned excitation light with various polarizations.
The results are compared with a spectroscopical determinedpotential [21].
The oscillatory structure of differential cross sections of optical collisions depend on
the polarization of the excitation laser. The control of atomic and molecular processes
by laser light is an active field of research. Experiments concerning coherent control
[22, 23] highlight the importance of the relative phase of the spectral components. The
control of chemical processes with complex molecules by pulse shaping techniques
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with one in respect to the phase and amplitude by learning algorithm [24] optimized
electric field is impressively demonstrated [25, 26]. Control schemes involving colli-
sions in caging reactions [27, 28], ultracold gases [29, 30], and bimolecular processes
[31, 32, 33] show the high potential of the method. Laser polarization as control tool
[34] for physical processes is gaining increased attention[25, 35]. Recent experiments
[36, 34] have demonstrated the possibility to manipulate and observe the collisional
complex using laser light. In this work this is extended to the total control over the
amplitude and phases of the interfering waves. The experiments are done for NaNe
collision pairs using positive detuned elliptical polarized excitation light.
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Chapter 1

Theoretical introduction

1.1 Differential cross sections

1.1.1 Potentials and optical transitions

Molecular interaction potentials are important to understand atomic and molecular
collision processes and chemical reactions in all energy regimes. They can be deter-
mined by spectroscopic techniques and ab initio calculations. The time-independent
Schrödinger equation of electrons moving in the field of nuclei is solved for fixed in-
ternuclear distances r (Born-Oppenheimer approximation [37, 38]). All electrostatic
interactions are taken into account. The spin is disregarded. The computed potentials
energies V�(r) for each electronic state depend on r. At infinite internuclear distances
the potential energies are the sum of the eigenenergies of the unperturbed collision
partners. An example for the LiNe potential energy curves isshown in figure 1.1. The
numerical calculation of potentials using additional approximations is very elaborate.
The accuracy of the potentials depend on the internuclear distance (repulsive part, well,
asymptotic region) and the method which is used. The LiNe andNaNe potentials were
calculated with a CPP (core polarization potential) approach reaching an accuracy of
10 cm�

�
in the relevant region (see [20]). Different CEPA (coupled electronic-pair ap-

proximation) methods were applied for LiHe [18] (CEPA-2CI [4]) and (CEPA-0 [39])
for LiH � [40], their accuracy is between 15 and 50 cm�

�
. The potentials are shown in

figures 3.5, 3.10 and 3.13.
In order to describe potentials in the presence of light fields the dressed collision pair
approach is used [41, 42] . Without light matter interactionthe photon energy h

�
sums

up with the potential energy V� (r) of the X
�� ��� ground state. The resulting energy

curve intersects with the curve V
� �� 	 of one of the excited states (see figure 1.2). The

internuclear distance r� where the intersection is placed, is called Condon radius��.
The resonance condition
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�
�
��� 	 � �� � �� ��� 	 (1.1)

is fulfilled [43]. The optical transitions are localized at the Condon radius. The diffe-
rence of the photon energy h

�
and the energy of the free alkali(s) to alkali(p) transition

is denoted as detuning. By changing the detuning it is possible to vary the Condon
radius. If light matter interaction is included, the potential curves are disturbed and
undergo a modification in presence of the light field. The crossing becomes an avoided
crossing and transitions could happen in the whole crossingregion. For the applied
experimental conditions (chapter 2), especially low laserintensities, the size of this
region is in the order of 0.03 a.u. (figure 1.3) and the change of the potential energies
less than 0.5 cm�

�
. Therefore it can be assumed, that the optical transitions are well

localized and that the potential curves are uneffected by the interaction with the light
field.
The optical transition probability	 from one electronic state� � � � to another� � � � can
be calculated using the Landau-Zehner model [44]. For a sudden (diabatic) approach
of the colliding particles, the system will remain in its initial state� � � � after passing
the crossing region. The transition probability p��� reads:

	��	 � 
 � ��� (1.2)
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with the Massey parameter
� � � � �� � �

� ��� � �
� �

Rabi frequency
� � �	
 � � 

� �
electric field vector of the exciting light

 �
transition dipole moment � �� � �  � �� �� � � � �
� � , � � : electronic wave functions of the transition,

�� : position vectors of the electrons and

e: charge of the electron
� ��� 	 �

radial component of the relative velocity at���� � �
slope of the difference of the two potentials at��

�� � �
��
	 � � �� � �

��
	 � �� ��� 			
��

In the adiabatic case the particles encounter slowly leading to a change of the electronic
state of the collisional system. p���� = 1 - p��� is the resulting transition probability. The
crossing region is passed twice. The total probability to change from state� � � � to � � � �
is 	 � 	��	 �
 � 	��	 	 �

(1.3)

For low light intensities is� �� 

. The equation 1.2 can be expanded to:

	 � � � �� � �

� ��� 	 ��� � �
�

(1.4)

The transition probability depends on the electric field:

	 � �� �  	� �
(1.5)

d is parallel to the internuclear axis for a
� � �

transition and perpendicular for a� � �
transition [45]. It has to keep in mind that not only the amplitude of� has an

influence, it is also possible to change the transition probability and to manipulate the
collisional system by varying the polarization.

1.1.2 Calculation of cross sections

In order to compare experimental results with the theory it is necessary to calculate the
differential cross sections from the molecular interaction potentials. A detailed repre-
sentation of the calculation procedure is described in [46]. The form of the Schrödinger
equation is a set of coupled-channel equations. The number of electronic basis states
underlying the numerical determination is limited. Only the ground state and the re-
levant excited states are used as a basis for the calculation. Higher excited states are
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disregarded. The differential cross sections are computedby partial wave summation.
The hyperfine structure is neglected. All calculations are done in the limit of zero laser
intensity. The low light intensity causes a non zero� which introduce an additional
phase 2� [47] leading to a shift in the interference pattern of the differential cross sec-
tion of less than 0.1

�
for the present experimental conditions [12, 48]. The spin-orbit

interaction is assumed to be independent of the internuclear distance and contributes
to the Hamilton operator. Nonadiabatic couplings because of spin-orbit and rotational
interactions are taken into account completely. The coupling between the B

�� ��� state
and the two A

�� ��� ���� states leads to a population of both alkali fine structure states
�

P��� and
�

P��� [11] (figure: 1.4). The conclusion is that the results of the calculations
can be assumed as exact for precisely known potentials.

1.1.3 Convolution

The experimental differential cross section� ��� for a fixed detuning is measured in
dependency of the scattering angle in the laboratory-frame

����, the electric field vector
� and the velocity of the projectile beam after the collision v��:

��	
 � ��	
 ���	� �  � 	� 	 � (1.6)

The calculated differential cross section��� in the center-of-mass frame is:

��
 � ��
 ����  � ��
�� � � 	 (1.7)
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where W� is the relative energy before the collision,
�
�� the scattering angle in the

center-of-mass system and� ��� � � the angle between the polarization of the excitation
laser and the relative velocity before the collision. In order to compare� ��� with ���
it is necessary to convert the theoretical data from the center-of-mass-frame to the
laboratory-frame coordinates. The relevant factors influencing the finite experimental
resolution are: the detuning, the polarization, the scattering angle, the particle masses,
the times-of-flight of the ions in the detector, geometricaldistances, the velocity distri-
butions of the particle beams before the collision, the number and width of the alkali
velocity classes after the collision, the particle densitydistributions in the scattering
volume, the size of the scattering volume and the dimension of the aperture of the de-
tector. They have to be taken into account to calculate an apparatus function f��� . The
appropriate experimental error margins are quoted in table2.10. f��� is calculated for
one

����, a fixed electric field vector� and a given detuning W���:
�	

 � �	

 ���	� �  � 	� � �  �

��  � ��
�� 	
(1.8)

The expected intensity I of the signal is calculated by a procedure similar to a convo-
lution. It is determined by a numerical integration over theproduct of the theoretical
differential cross section and the apparatus function:

� ���	� �  � 	� 	 � � ��	

 � ��
 	 �� � ��
�� �� ��
��

(1.9)

For a more detailed insight into the specific calculations and how the experimental
resolutions are implemented see [49, 50].

1.2 Semiclassical description

1.2.1 Semiclassical picture

The quantum mechanical approach describes the optical collisions quantitatively ac-
curate. However, the deviations between the quantum mechanical picture and a semic-
lassical description using classical trajectories, localized transitions and interference
are small enough to justify the usage of the semiclassical description to get a more
intuitive comprehension and to make qualitative predictions of the process [51]. An
example of differential cross sections for NaKr calculatedwith both pictures is shown
in figure 1.5.
Figure 1.6 is a geometric illustration of a atom-atom collision in the center of mass

system. The vectorr is pointing from the target atom to the projectile particle.It under-
goes a rapid rotation during the collision. The trajectoryr(t) of the projectile particle
in the potential V(r) is described in the polar coordinates r(t) and �(t). b is the im-
pact parameter,� the deflection angle andv, v � are the relative velocity vectors before
and after the collision. The energy E and the orientation of the angular momentum in
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Figure 1.5:Differential cross sections: quantum mechanical (black line) + semiclassi-
cal (dashed line). NaKr, detuning: 137 cm�

�
, W� �� : 100 meV, fixed polarization [50].

The qualitative and the quantitative deviations are slightfor scattering angles big-
ger than 20

�
. At small scattering angles the deviation gets large and thesemiclassical

cross section disappears.

respect to the scattering plane is conserved for atom-atom collisions [47]. The rele-
vant potentials for an optical collision are the potential curves of the V� + h

�
and V

�
states. V(r) is constructed taken into account the changeover between both states at
the Condon radius during the incoming (

�� � �) or the outgoing (
�� � �) part of the

collision. The influence of two different potentials V� and V� (figure 1.7) leads to two
different trajectories. The equation for the classical deflection function is derived from
the equations of motion:

� ��  � 	 � � �
��

��
�
�
�

�
	




 
 � � � ���� � � �

��
� 



 
 � ���� �� �� � � �
��

�
� ��

 (1.10)

with the initial collision energy� � �
� mv

�

, where v is the absolute value of the initial
relative velocity and m the reduced mass of the collisional particles. V��� (r) is the
potential for the approaching and V��� (r) for the diverging particles. The deflection
function allows to determine the deflection angle of the projectile for different impact
parameters and a given collision energy. In the experiment only the absolute value of
the deflection angle labeled as the scattering angle

�
(
� � ��� � � 	��� ��� 	 � � �) is

detectable. The deflection functions have to be calculated for both potentials V� and
V�. Figure 1.8 shows an example of a deflection function for V�. The minimal value
of � is denoted as

��
, with the appropriate impact parameter b

�
. In figure 1.5 it can be

17



b
r(t) r

0

)

(

χ

ϕ(t)

 projectile atom

target atom

r

v

v’

Figure 1.6:A classical trajectoryr(t): r(t) and �(t) are the coordinates. b is the impact
parameter,� the deflection angle and r� the classical turning point.v andv � are the
relative velocities before and after the collision.

0 5 10 15 20 25

internuclear distance [a.u.]

−400

−300

−200

−100

0

100

200

300

400

500

600

700

p
o

te
n

ti
a

l 
e

n
e

rg
y
 [

c
m

−
1
]

V
e
(r)

Li(2p)+Ne

Li(2s)+Ne

r
c

V
g
(r)+hν

V
e
(r)

0 5 10 15 20 25

internuclear distance [a.u.]

−400

−300

−200

−100

0

100

200

300

400

500

600

700

p
o

te
n

ti
a

l 
e

n
e

rg
y
 [

c
m

−
1
]

V
g
(r)+hν

V
e
(r)

Li(2p)+Ne

Li(2s)+Ne

r
c

V
g
(r)+hν

Figure 1.7:Potentials V� and V� for LiNe including the energy of the excitation photon.
Left side V�: The approaching particles follow the V� + h

�
potential curve, are excited

during the first passage of��, reach the classical turning point and diverge under the
influence of the V

�
potential curve. Right side V�: The particles converge, reach the

classical turning point and separate influenced by the V� + h
�

potential curve, while
the second passage of r� the excitation occurs and the particles follow the V

�
potential

curve.

18



0 2 4 6 8 10

impact parameter b [a.u.]

0

50

100

150

d
e

fl
e

c
ti
o

n
 a

n
g

le
 χ

 [d
e
g
]

θ

θ
r

b
r

b 0 2 4 6 8 10

impact parameter b [a.u.]

0

50

100

150

d
e

fl
e

c
ti
o

n
 a

n
g

le
 χ

 [d
e
g
]

θ

θ
r

b
r

b
2

b
1

χ
1

χ
2

Figure 1.8:Deflection functions and phases. NaNe positive detuning. Left side: de-
flection function� �(v,b) for an optical transition in the outgoing part of the collision.
Disregarding the constant addends of equation 1.12 the shaded area is proportional
to the phase of the corresponding trajectory. Right side: deflection functions� �(v,b)
(dot-dashed) and� �(v,b) (solid) for both possibilities of excitation. The shaded area is
proportional to the phase difference

��.

seen that there is no classical signal for small deflection angles. The largest possible
classical impact parameter of an optical collision equals the Condon radius. In the
region of� � �� and

� � ��
the boundaries of the semiclassical model are reached.

The semiclassical phase of a trajectory after the collisioncan be calculated as an
integral over the wavenumber� ��

	 � � ��	
 :

� �� 	 � ��
� � ��

	�� (1.11)

elementary transformations which are described in detail in [49] lead to the following
expression:

� ��  � 	 � ��
� ��
� � �� � 	�� � � ��� � � �

(1.12)

The phase is proportional to the shaded area in the left graphof figure 1.8 disregarding
the constant addends��� � �

. In the right graph the deflection functions� �(v,b) and� �(v,b) for both possibilities of excitation are shown. For a given scattering angle tra-
jectories belonging to two impact parameters cause two different phase contributions.
In order to include interference of the undistinguishable pathways, the resulting phase
difference

�� of the different trajectories has to be introduced:

�� �� 	 � �
���
�
�� � �� � 	 � � � �� � 		 �� � �

(1.13)
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Figure 1.9:Deflection functions� �(v,b) (dot-dashed) and� �(v,b) (solid) for NaNe col-
lision pairs. Left side: positive detuning of 120 cm�

�
, relative energy E = 717.4 cm�

�
,

scattering angle
�� � �� ���. Right side negative detuning of -299.7 cm�

�
, relative

energy E = 746.1 cm�
�
, scattering angle

�� � 
� �
�.

� � �� 	 and�� �� 	 are the two impact parameters. The phase difference is proportional to
the shaded area in the right part of figure 1.8. Its variation with the scattering angle is
responsible for the interference structure in the differential cross section (figure 1.5).
Deflection functions of NaNe for positive (left) and negative detuning (right) are shown
in figure 1.9. The two possible impact parameters for positive detuning and a fixed
deflection angle lead to two trajectories. Negative detuning allows the excitation of the
A

��
state. The appropriate potential has an attractive part which can cause negative

values of�. Up to four impact parameters b� - b� with the resulting trajectories are
possible. In figure 1.10 the classical geometries of the optical collisions corresponding
to the marked scattering angles

��
and

�� of figure 1.9 (left side: positive detuning;
right side: negative detuning) are illustrated. The curvesare the trajectories of the alkali
atom viewed by the target particle. The large circle has the radius r�. r� are denoted as
the Condon vectors. They are pointing from the target atom tothe projectile particle in
the moment of excitation. For positive detuning the two trajectories bend away from
the target, because the B

��
state is excited, the particles basically feel repulsive forces.

In the case of negative detuning (right) there are up to four Condon vectors. Two of the
trajectories are also mainly repulsive. The other two trajectories are mainly attractive
and bend towards the target. Strongly attractive trajectories as shown in this graph
only occur at adequately low relative velocity. For high relative velocity simply two
repulsive trajectories remain. The different pathways contribute different to the signal.
The appropriate relative weights are indicated by the diameters of the small circles.
The vectorE denotes the amplitude of the electric field vector in the collision plane.
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Figure 1.10:Optical excitation during an atom-atom collision. The darkcurves are
the trajectories for the relative motion of the two atoms.v and v’ are the relative
velocity vectors before and after the collision. Ther� are the Condon vectors. The
centers of the small circles on the trajectories denote the transition points where the
photon is absorbed, their sizes indicate the relative weights of the signal contributions.
E denotes the amplitude of the electric field vector. The size of the diagrammed area
in both graphs is 20 a.u.� 20 a.u.. The experimental conditions are as in figure 1.9
(left side: positive detuning,

� � �
transition; right side: negative detuning,

� � �

transition).

The semiclassical expression for the differential cross section is

��
��

� 

��� �� 	

������
�
�

���� 	� � ��
������� � � 

�	
 ������

�

�
(1.14)

The summation is done over all contributions of the different trajectories to one scat-
tering angle

���
in the center of mass system. The�� are the impact parameters and�� is the collision induced scattering phase. The p� are the transition probabilities des-

cribed in equation 1.4. Singularities, where the semiclassical value goes to infinity are
denoted as rainbow or glory structures. Rainbow structuresappear e.g. as described be-
fore at the smallest possible deflection angle

��
(d�/db� � �). In the case of attractive

potentials and� equaling zero glory structures can be observed.

1.2.2 Polarization dependence

The transition probability p� is proportional to the scalar product of the electric field
E and the transition dipole momentd (p � �� �  	� as described in equation 1.5. The
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semiclassical differential cross section of equation 1.14can be written as:

� ���� 	 �
������
�
� �� � � �

�	 ���� 	
������
�

 (1.15)

with the phases�� of the separate trajectories, the relative weights of the signal contri-
butions q�

��
�

���� ����
������� � ��� ��� � � (1.16)

and the transition dipole moments� . Equation 1.15 holds for linear as well as elliptic
polarization. The contribution of each trajectory can be switched off by varying the
linear polarization of the electric field in such a way that the scalar product� � �
vanishes. Due to the fact that for positive detuning� is parallel to�� , the interference
structure vanishes ifE is perpendicular to one of the�� . The maximal values of�
are expected for aE positioned in between the two Condon vectors (left graph of
figure 1.10). For negative detuning� is perpendicular to�� , the contribution of one
trajectory is deactivated, if one of the�� is parallel to� . The polarization of� which
lead to maximal signal in this case depends on up to four relative weights, an instance is
denoted in the right graph of figure 1.10. The described theory refers to the possibility
to use the polarization of the exciting light as a tool to investigate and manipulate
atomic collisions.
For two trajectories and a

� � �
transition (� � �� ) equation 1.15 can be converted:

� ���� 	 � �� � � � �
� �� � � �	 ���� 	 �� with: �

� ��

� �
(1.17)
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��
is the phase difference and q the relative weight. In generalthe electric field vector

E is complex:
� �� 	 � � �	 ��� � 	

(1.18)�
is the radial frequency of the exciting light. This shape ofE is realized for elliptical

polarized light. The amplitude vectorE of the electric field can be expressed as

� � �� �� � � ��� �
	

(1.19)

with the linear independent vectors� � and the complex expansion coefficients�
�. In-

cluding this expansion leads to:

� ���� 	 � �� � � �� �� � � ��� �
	 �

��� � �� �� � � ��� �
	 �	 ���� 	 �� (1.20)

The vectors�� are introduced reciprocal to the Condon vectors�� such that� � � � �
� 
  � � � � �

� �
� � � �� � ��

	 � �  � � � �� � ��
	 � 


The formula for the differential cross section then simplifies to:

� ���� 	 � �� � � �� �	 ���� 	 �� (1.21)

calculating the square of the absolute value:

� ���� 	 � 
 � � �
����
��� � ���� � ��� ��� � � 	 � ����

���� ����� �

with the real control parameter
�

: (1.22)� � �
�� 	��� � 
  � � ��  �� �

The value of the differential cross section for a given scattering angle
�
�� is determined

by the phase difference
� � of the two trajectories. The additional phase, which is

introduced by the control parameter
�
, opens up the possibility not only to manipulate

but also to have total control over the interference pattern.
�

can be shifted to any
desired value by the choice of the complex expansion coefficients��. Arbitrary values
of the �

� can be realized by choosing the corresponding elliptical polarization of the
exciting light.
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Chapter 2

Experimental set-up

2.1 Principle components

Li oven

Rydberg detector

excitation laser

detection laser

pulsed nozzle

skimmer

Figure 2.1:General scheme of the experiment: The alkali beam and the target gas be-
am are intersecting in the scattering volume. The counterpropagating excitation and
detection lasers are aligned perpendicular to the collision plane. The rotatable Ryd-
berg detector gauges the scattered and excited alkali atomsangle and time resolved.

The principle components of the set-up can be seen in figure 2.1. Four beams intersect
each other in the scattering volume: the alkali atomic beam produced by a two cham-
ber oven (subsection 2.4), the supersonic rare gas or molecular beam operated with a
pulsed nozzle (subsection 2.5), the excitation and the detection laser beam (subsection
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The experimental apparatus

angles between the target and the projectile beam 90.4
� � �� ���

angle between the laser and the particle beams 90
�

dimensions of the scattering volume ø 1 mm, length 10 mm
accessible laboratory scattering angle -18

� � �� ���
distance scattering volume to detector 70 mm
laser pulse duration 12 - 20 ns

Table 2.1: General quantities of the experimental set-up.

2.2). In order to avoid significant losses due to scattering with the background gas it is
necessary that the following collision experiments all take place in a high vacuum re-
cipient. The vacuum recipient is made of two main chambers, which are differentially
pumped. The scattering chamber, which consists of the scattering volume, the alkali
beam source and the detector, is actively pumped by an oil diffusion pump. A liquid
nitrogen filled cooling trap is used to decrease the resulting pressure additionally. The
pressure obtains values around 10��-10�� mbar without operating beams and 10��-
10�� mbar with beams in operation. The second chamber with the pulsed nozzle is
pumped by a turbo molecular pump reaching pressures in the range of 10�� mbar if the
target beam source is switched off. For typical working conditions (reservoir pressure
of 100 mbar, nozzle opening time around 250�s, repetition rate of 80 Hz) the pressure
increases to values of 10��-10�

�
mbar. The two particle beams cross each other under

an angle of roughly 90 degrees defining the scattering plane.The counterpropagating
excitation and detection laser beams shine in perpendicular to the plane. The sizes of
the beams are limited: the supersonic target beam by a skimmer, the alkali beam by an
aperture in front of the oven and the laser beams by a system ofblinds inside and iris
diaphragms outside the vacuum chamber. The resulting shapeof the scattering volume
is a cylinder with ten mm length and a diameter of one mm. The scattered excited alkali
atoms are detected after being transferred in a longer living Rydberg state. The target
particles leave the scattering volume in their electronic ground states. The detection is
done by a Rydberg detector, which is rotatable in the scattering plane and around the
scattering volume (subsection 2.6). General quantities ofthe set-up are listed in table
2.1.
The directions of the particles before and of the projectileatoms after the collision
are determined by the apertures. The velocity of the alkali particles after the collision
is measured by a time of flight analysis. The velocity of the target beam before the
collision can be calculated and determined indirectly (subsection 2.5). In conclusion,
the internal states and all relevant velocity vectors before and after the collision are
known. The collision is completely characterized.
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projectile excitation laser dye tuning rangedetection laser dye tuning range

Li DCM 605 - 698 nm DMQ 342 - 385 nm
RDC 360-NEU 338 - 365 nm

Na Rhodamine 6G 570 - 610 nmDPS 395 - 420 nm

Table 2.2: List of the dyes used for experiments with different projectile atoms and the
appendant tuning ranges of the wavelengths (quoted from [52]).

2.2 Laser system and optical set-up

The excitation and detection photons are generated by two dye lasers (FL3002 Lamb-
da Physik) [53] pumped by a pulsed excimer laser emitting at awavelength of 308
nm (EMG 201 MSC Lambda Physik) [54]. Experiments with different alkali metals
require dyes which match with regard to their wavelengths conditions (see tables 2.2
and 2.3).
The system allows repetition rates up to 80 Hz. The pulse-lengths of the dye lasers are
among 20 and 24 ns with a maximum energy of 6 mJ. The spectral width is 0.2 cm�

�

[53]. The typical energies of the excitation laser in the scattering volume are within the
limits of 0.2 - 0.6 mJ. The detection laser is used with energies between 0.1 and 0.2
mJ.
The optical path of the lasers and the optical set-up is shownin figure 2.2. The beam
of the excimer laser is divided 1:1 by a beamsplitter and pumps the excitation and de-
tection laser simultaneously. The telescopes enlarge the dye laser beams to a diameter
of 10-20 mm.
The dye lasers not only produce a peak at the selected wavelength, they also produce
a broad amplified spontaneous emision (ASE) over the wavelength range of the used
dye. The intensity of the ASE is more than


�� smaller than the peak intensity. The
fraction of the ASE which is resonant to the alkali(s� p) transition can cause back-
ground signal. The suppression of this background signal isdone by a prism set-up

List of wavelength
projectile � excitation laser detuning � detection laser transition
Li 660.288 nm 241.2 cm�

�
351.352 nm 2p���

�� 30d
660.288 nm 241.2 cm�

�
351.355 nm 2p��� �� 30d

Na 600,368 nm -299.7 cm�
�

410,155 nm 3p��� �� 34d
585,611 nm 120 cm�

�
410,155 nm 3p��� �� 34d

577,494 nm 360 cm�
�

410,155 nm 3p��� �� 34d

Table 2.3: Laser wavelengths�, detunings and detection transitions of the experiments
described in this work.
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Figure 2.2:The optical system: BS: beamsplitter, M: mirrow, T: telescope, P: prism,
POL: polarization prism, FR: Fresnel rhomb, EP:�/4 plate, L: lens, D: iris dia-
phragm, A: aperture, W: antireflective window, S: scattering volume, PD

�
, PD�: pho-

todiodes for the excitation and the detection laser.

which is described in figure 2.3. The beam of the excitation laser passes two SF 10
dispersion prisms two times, which leads to a dispersion of


���
rad/nm. By the use

of two apertures in combination with the long pathway (� 10 m) of the laser beam it
possible to filter the resonant fraction of the ASE.
The polarizers and the Fresnel rhombs are applied to manipulate the plane of polari-

zation of the laser light (subsection 3.3.1). The directionof the linear polarization is
adjustable within�� ���. The degree of linear polarization is measured to be better than
99%. In the experiments with elliptic polarized light (subsection 3.3.2) an additional
�/4 plate is added to generate the necessary elliptic polarization. The position of the
main axis of the plate is adjustable within�


�
[55]. In order to avoid unnecessary light

intensity losses, coated optical components (e.g.: prisms, lenses, windows) are applied
for different alkali metals.
An optimal overlap of the lasers, the target and the projectile beam leads to a well
defined scattering volume. Two iris diaphragms and two adjustable lenses outside and
four appertures inside the collision chamber allow to alignthe size and position of
the scattering volume within�0.1 mm. The focussing of the lasers on the appertures
which are behind the scattering volume relative to the laserbeam direction reduce the
amount of error signal by stray light. In order to evaluate the quality of the measure-
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Figure 2.3:The schematic diagram of the prism set-up is shown as top and side view
in order to illustrate the three dimensional guidance of thebeam. The beam of the
excitation laser passes through a aperture A into the prism set-up. After passing two
prisms P it is back reflected by the first mirrow (M) through theprisms again. A second
mirrow (M) which is below of the plane of the prisms directs the beam through a second
aperture A.

ment it is necessary to control and monitor the laser intensities. The relative intensities
of the lasers are measured by the photodiodes PD

�
and PD� after passing the collision

chamber.

2.3 Calibration of the laser wavelength

The detection laser is calibrated in two steps. First the electron energy levels T� �� for
the atomic Rydberg states are calculated by using a modified Rydberg-Ritz formula

calibration of the detection laser
projectile

�
� quantum defect

�� accuracy
[nm] [cm�

�
] [nm] [cm�

�
] [nm] [cm�

�
]

Li 0.002 0.16 0.0005 0.04 0.0021 0.17
Na 0.002 0.12 0.0015 0.09 0.0025 0.15

Table 2.4: Uncertainties of the wavelength position
�
� of the measured spectral lines

relative to the calculated ones, of the calculated spectrallines due to the inaccuracy
of the quantum defect

�� and the resulting accuracy of the calibration of the detection
laser in the wavelength and energy regime.
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Figure 2.4:NaNe: Spectrum of transitions from Na(3p) to different Rydberg states
nl. The detuning of the excitation laser is fixed at 120 cm�

�
and the wavelength of

the detection laser is scanned. The vertical lines are the calculated positions of the
transitions. The appropriate numbers are the principal quantum numbers n. The sizes
of the calculated lines indicate the fine-structure of the excited state and the angular
momentum l of the Rydberg state, as denoted on the right side of the graph. The strong
signal on the right belongs to a two-photon line.

[56]:
�� �� � �� � ���� � �� 	� with: �� � ��


 � � �� (2.1)

where T
�

is the ionisation energy (taken from [57]) for a given electron configuration
alkali(n,l) with the main quantum number n and the angular momentum quantum num-
ber l.

�� is the corresponding quantum defect with an uncertainty of�1 %. It is quoted
for Li and Na in [56]. R� is the Rydberg constant of the given atom with the mass
M. m

�
is the electron mass and R

�
the Rydberg constant. The result is compared with

a Rydberg series measured by scanning the detection laser wavelength over ranges of
0.5 nm to 1.5 nm next to the later used detection wavelength. An example is shown
in figure 2.4, significant signal only appears if the wavelength of the detection laser is
resonant to a transition between the alkali(p) and a Rydbergstate (nl):

�� ��	 	 � ��� �� �� �� �	
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calibration of the excitation laser
projectile

�
k quantum defect

�� detection laser accuracy
[cm�

�
] [cm�

�
] [cm�

�
] [cm�

�
]

Li (I) 0.03 0.05 0.17 0.18
Na (I) 0.03 0.2 0.15 0.25
Na (II) 0.1 irrelevant irrelevant 0.1

Table 2.5: Uncertainties of the energy position
�

k of the measured spectral lines re-
lative to the calculated ones, of the calculated spectral lines due to the inaccuracy of
the quantum defect

��, of the calibration of the detection laser and the resultingaccu-
racy of the calibration of the excitation laser. In the thirdrow (II) the uncertainty in
the determination of the resonance lines and the resulting accuracy of the resonance
flourescence calibration are given.

(2.2)

� ��	 	 � ��� �� 
� �� �	

h
�� is the energy of the detection photon. The excitation laser detuning is fixed. Due to

the spectral resolution the determined calibration value
�
� has an uncertainty of 0.002

nm. The accuracy of this calibration, due to the error of the given quantum defects and�
� adds up to�� �
� cm�

�
for lithium and� � �
� cm�

�
for sodium (table 2.4).

In order to calibrate the excitation laser the wavelength ofthe detection laser is varied
over the range where two-photon excitation is expected:

�� ��� 	 � ��� � ��� �� �� �� �	
(2.3)


� ���	 � ��� � ��� �� 
� �� �	
Figure 2.5 shows the dependence of the signal from the added energies of the excita-
tion and the detection photon and the calculated positions for two-photon excitation
in wavenumbers. The real excitation laser wavelength is determined from the energy
difference of the calculated and detected lines. The accuracy of the calibration depends
on the errors of the given quantum defects

��, the accuracy of the relative positioning�
k between the measured spectrum and the calculated line positions and the uncer-

tainty of the calibration of the detection laser. The resulting accuracy is in the range of
�� �� cm�

�
for lithium and� � �� cm�

�
for sodium (table 2.5).

A second possibility to calibrate the excitation laser is totune it next to a resonant tran-
sition from the ground state to an excited state of the projectile. The laser wavelengths
is varied slightly. At the resonance wavelength fluorescence appears and can be obser-
ved through a window in the vacuum chamber. The accuracy of this calibration (further
called resonance fluorescence calibration) is about�� ���� nm, which converts to�� �

cm�

�
in wavenumbers for sodium (table 2.5). Although the resonance fluorescence ca-

libration is more precise than comparing the calculated with the measured spectra, the
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Figure 2.5:Spectrum of 2-photon transitions from Na(3s) to different Rydberg states
Na(nl) as a function of the added photon energies. The detuning of the excitation la-
ser is fixed at -299.7 cm�

�
and the wavelength of the detection laser is scanned. The

dashed vertical lines are the calculated positions of the 2-photon transitions. The ap-
propriate numbers are the principal quantum numbers n followed by the angular mo-
mentum l.

method is not used for lithium because the fluorescence is in the red, where it is hard
to be viewed with the naked eye.
A drift of the detection laser wavelengths during long term operation is observed but
has no effect on the calibration because the excitation laser is calibrated directly after
calibrating the detection laser. The detuning is not changed during a measuring period.
The wavelength of the excitation laser remains fixed. The wavelength of the detection
laser is more often varied, but before every measurements itis shifted to the maximum
of the choosen detection transition.

2.4 Alkali beam

The alkali beam sources are illustrated in figure 2.6. The relevant geometric and phy-
sical quantities of the sources are quoted in table 2.6. Alkali dimers in the beam can
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Figure 2.7:left graph: Calculated angular distribution of the standardized sodium par-
ticle current density j for one capillary and two different oven reservoir temperatures.
right graph: Variation of the sodium particle density over the axis of the scattering
volume SV for different temperatures of the oven reservoir.
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sodium lithium

diameter and length of the capillaries ø 0.8 mm, 8mm ø 0.8 mm, 5mm
number of the capillaries 10 per 10.6-11.8 mm 9 per 10 mm
distance capillaries-scattering volume 71.2 mm 66.7 mm
aperture 1mm� 10mm 1mm� 10mm
distance aperture - scattering volume 7.2 mm 7.2 mm
temperature of the head 870-990 K 980-1020 K
temperature of the reservoir 610-650 K 830-920 K
particle density in the reservoir 0.9 - 2.9 * 10

� �
/m

�
0.2 - 1.6 * 10

� �
/m

�

Table 2.6: Relevant geometric and physical quantities of the projectile beam sources.

cause error signal. A two chamber design allows to reduce thefraction of the dimers
in the beam. Both chambers are heated up to different temperatures. The first cham-
ber (reservoir) is the source of the alkali atoms. Its temperature determines the vapor
pressure of the alkali atoms and so the particle density in the whole oven and in the
scattering volume. The reservoir is connected to the secondchamber (oven head) by a
tube. The oven head is hotter than the reservoir which increase the thermic dissociati-
on of the dimers [58, 59]. The temperature differences between head and reservoir are
chosen to values that the fraction of dimers is reduced to less than 0.15 % for lithium
and 0.03 % for sodium [60, 61, 62].
The temperatures which are needed to reach sufficient lithium densities in the scatte-
ring volume are to high to use the same oven like for sodium. A new oven was de-
veloped (right picture in figure 2.6), the principle of a two chamber oven is still used,
just the heating system is modified. The sodium oven works with commercial available
heating cartridges1 for the reservoir and a heating cable2 for the head. In the lithium
oven tantalium wires passing through ceramic tubes are usedfor both parts.
The alkali atoms leave the head through a line of capillaries. Their velocity distribu-

tion is determined by its temperature. The capillaries of the oven, a heatable aperture
and the middle of the scattering volume are adjusted on one axis. Calculated angular
distributions of sodium particles for one capillary and different temperatures are shown
in the left graph of figure 2.7 [63]. The small angular distribution for 650 K is typical
for an effusive beam [64], the more broader distribution for760 K is an indication for
a Knudsen flow [63, 65]. A Knudsen flow appears in the intermediate regime between
the free molecular and gasdynamical flow [66]. The right graph of figure 2.7 illustrate
the resulting sodium density in the scattering volume computed for all capillaries of
the sodium oven. Only one half of the scattering volume is illustrated, because the be-
am is symmetrical. The particle density is almost constant over the whole volume, at
both ends the density is 3 % lower than in the center.

1T+H HLP 0203, Türk+Hillinger GmbH, Tuttlingen
22ZE/15/25-44/Ti/CW2 15, Thermocoax, Stapelfeld
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Figure 2.8:The measured velocity distribution of the flux of the Lithiumatoms without
collisions. The dashed line is a fit on the experimental data (circles with error bars).
The long-dashed line is the Maxwell-Boltzmann distribution for a temperature of the
oven head of 972 K.

The ovens are mounted on a copper plate which is part of a watercooled copper cham-
ber. The atoms not leaving the chamber directly through the aperture, are deposited on
the cold surface of the copper chamber, this leads to a reduction of the alkali back-
ground pressure in the scattering volume avoiding unintentional collisions with target
or other projectile particles.
In the Knudsen regime the velocity distribution of the particles in the alkali beam is
not a Maxwell-Boltzmann distribution [67] as can be seen forLi in figure 2.8 where
a typical measurement of the velocity distribution is shown. The calculated Maxwell-
Boltzmann distribution has a slower velocity than the experimental distribution. In
order to compare experimental and theoretical results the experimental determinati-
on of the alkali velocity distribution is done regularly. The velocity of the projectile
atoms is detected in 0

�
(forward) direction of the alkali beam by transferring the alkali

atoms into a Rydberg state by a two photon process. The intensity of the measured
velocity distribution I(v) is assumed to be proportional tothe velocity distribution of
the projectile density before the collision. The measured signal is fitted with the model
function: � �� 	 � � � 
 �� �  (2.4)

the function p(v) is a polynom up to the second grade (for moredetails see [49]). The
good agreement between experimental data and fit in figure 2.8justifies the use of the
model function p(v).
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Figure 2.9:Example of a sodium beam profile with (diamonds) and without (circles)
target beam in operation. 0

�
is the forward direction of the beam.

An example of a sodium beam profile is shown in figure 2.9. The measurement is done
with a 3 mm aperture of the detector leading to a theoretical angular resolution of 2.5

�
.

The full width at half maximum (fwhm) of the measured beam profile is 2.7
�
. The be-

am profile is measured by using a two photon process equivalent to the determination
of the velocity distribution of the alkali atoms. This type of measurement is regularly
done to determine the forward direction of the alkali beam. The accuracy of the deter-
mination of the forward direction is� 0.3

�
.

2.5 Target beams

2.5.1 Atomic beams

The design of the target beam source with all geometric sizeswas optimized in pre-
vious works [50, 68, 69]. It is shown in figure 2.10. The relevant quantities are given in
table 2.7. The target beam is generated by a pulsed nozzle3 driven by a pulse driver4.

3series 9 high speed solenoid nozzle, General Valve, Fairfield
4IOTA pulse driver, General Valve, Fairfield
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53°

nozzle outlet: 0.2 mm

Figure 2.10:Schematic design of the target beam source with the appendant geometric
dimensions.

Before reaching the scattering volume the target beam passes a skimmer. The whole
set-up leads to a supersonic expansion of the beam [65, 69]. In order to analyse the ex-
perimental data and compare the results with the theory (section 1.1.3) it is necessary
to know the velocity and angular distributions of the targetbeam.
The velocity distribution p(v) of a supersonic beam can approximately be described by
a Gaussian [70]:

	 �� 	 � �
� ����� �

���	 
�
(2.5)

m is the atomic mass, k� the Boltzmann constant and v� the mean velocity. The trans-
lational temperature T� determines the width of the distribution. v� and T� depend on
the diameter of the nozzle orifice and the pressure in and the temperature of the gas
reservoir. The velocity can be calculated with a modified gasdynamic approach for su-
personic beams using a ”quitting surface model” as explained in [70, 71, 72, 73]. The
theoretical velocity values for the different rare gases which are used in this work are
quoted in table 2.8. The error margins of the calculated velocities are determined by
the accuracies in the determination of the gas temperature and of the pressure.
The velocity of neon is not directly measurable in the described set-up. The experi-

mental verification of the theoretical values is very elaborate. The neon velocity can be
determined indirectly by investigating the elastic scattering with sodium. The velocity
distributions of the alkali beam before and after the collision are needed for the cal-
culations and are presented in figure 2.11. The velocity of the sodium after the optical
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The target beam source
target gases He, Ne, H�, D�

reservoir pressure 100 mbar
diameter of the nozzle outlet 0.2 mm
duration of the nozzle control pulse Li:250�s

Na: 400�s
pulse frequency 80 Hz
distance nozzle - scattering volume variable

Li: 12.8 mm
Na: 12.8 mm

distance skimmer - scattering volume 5.02 mm
inclination of the skimmer 53

�

aperture of the skimmer 5.38 mm� 0.76 mm

Table 2.7: Relevant geometrical and physical quantities ofthe target beam source.

collision is calculated taking into account the measured sodium velocity distribution,
the calculated neon velocity distribution and the other relevant experimental resoluti-
ons as described in section 1.1.3. The result of this procedure is compared with the
experimental data. Due to the fact that the Na velocity distribution is too broad to see
significant effects of a varying neon velocity, a smaller distribution is needed. The ex-
perimental set-up is modified by inserting a chopping wheel into the projectile beam
as described in detail in [63].
The measured velocity distribution of the unscattered sodium can be approximated by
a Gaussian because it is narrowed by the chopping wheel. The maximum of the in figu-
re 2.11 illustrated example is at (1366.6� 3) m/s and the full width at half maximum
is �� � 
�� � � 	 m/s. The sodium velocity is reproduced within� 3 m/s. The Neon
velocity is determined to���� � 
� �� 	 m/s by an iterative procedure. Taken into ac-
count the uncertainties of the other quantities used to calculate the theoretical data the
total uncertainty in the experimental determination of neon sums up to� �
 m/s. The
theoretical value of 762 m/s is reproduced within the experimental error margins. Due
to the fact that the theoretical velocity of neon and also argon [49] are experimentally
reproduced within�� %, the theory is assumed to describe the velocities of rare gases
with an error margin of�� %. The resulting velocity of helium is�
�� 
 � �� 	 m/s.
For one set of NaNe experiments using elliptical polarized light it was necessary to in-
crease the reservoir pressure of Ne to a value of 300 mbar. In previous works [63, 49] a
shift of the Ne and Ar velocities to lower values than the calculated ones was observed
for reservoir pressures higher than 100 mbar. The rare gas velocity has a distributi-
on somewhere between the a supersonic and a thermal distribution. The underlying
process is not understood, yet. This effect leads to a higheruncertainty in the deter-
mination of the Ne velocity. However, a value of 769 m/s is used for the convolution
procedure.
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Figure 2.11:Experimental test of the neon velocity. Left: Measured velocity distri-
bution of the unscattered sodium (data points with error bars) and the corresponding
Gaussian fit (line). Right: Calculated (line) and measured (data points with error bars)
velocity distribution of the sodium after the collision (detuning: 360 cm�

�
,
����: 
� ���).

The angular distribution I(�) of the target beam is given by:

� �� 	 � ���� �
 �
�� 	
(2.6)

and illustrated on the left side of figure 2.12 [70]. The resulting calculated normalized
density distribution of the target atoms in the scattering volume for the applied distance
between nozzle and scattering volume is shown on the right side of figure 2.12. The
density at both ends of the scattering volume is around 90% ofthe density in its center.

target reservoir temperature reservoir pressuremean velocity T�
He ���� � � �� 	�K �
�� � � 	mbar �
�� 
 � � 	

m/s 11(.3)
�

Ne��� ���� � � �� 	�K �
�� � � 	mbar ���� � � 	m/s 8(.2)
�

Ne�� � ���� � � �� 	�K ���� � � 	mbar ���� � � 	m/s 2(.7)
�

Ne�� � ���� � � �� 	�K �
�� � � 	mbar ���� � � 	m/s 8(.2)
�

Table 2.8: Left: The used temperatures and pressures of the gas reservoir for diffe-
rent target atoms and the appropriate experimental accuracies. The indices mark the
appropriate experiment (1: NaNe; 2: NaNe, elliptical polarized light; 3: LiNe). Right:
Resulting calculated mean velocities with the corresponding error margins and the
translational temperature T�. The indices at the rare gases mark the collisional system.
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Figure 2.12:Left: calculated angular distribution of the standardizedrare gas particle
current density j; right calculated rare gas distribution in the scattering volume SV.

target reservoir temperature reservoir pressuremean velocity T�
H� ���� � � �� 	�K �
�� � �	mbar ��� 
� � 
� 	m/s 7(.5)

�

D� ���� � � �� 	�K �
�� � �	mbar �
�
� � � 	
m/s 7(.4)

�

Table 2.9: Left: The used temperatures and pressures of the gas reservoir for diffe-
rent target molecules and the appropriate experimental accuracies. Right: Resulting
calculated mean velocities with the corresponding error margins and the translational
temperature T�.

2.5.2 Molecular beams

In order to produce a molecular target beam with H� and D� the same source as for
rare gases is used.
While atoms have just translational degrees of freedom, molecules have additional in-
ner degrees of freedom (vibrational and rotational). Due toquantum mechanical effects
the number of degrees of freedom in a gas ensemble may depend on the temperature
[70]. Therefore the determination of the velocity distribution of molecular beams is
more complex as for atomic beams, especially for H� and D�. If all parameters of a
special molecule are known with high accuracy the quitting surface model is applica-
ble. This is typically not the case for molecules.
Measurements done for molecules in the context of [63] give an indication that for H�

and D� the inner degrees of freedom do not contribute. Therefore itis assumed that
the vibrational and rotational energies remain constant. Under this condition a quitting
surface model treating the molecules as atoms is used for theapplied experimental
specifications (furthermore referred to as the ”simplified model”).
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Figure 2.13:Experimental test of the H� velocity. Left: Measured velocity distribu-
tion of the unscattered sodium (data points with error bars)and the corresponding
Gaussian fit (line). Right: Experimental (data points with error bars) and calculated
Na velocity distributions. The dotted line is the calculated distribution for the quitting
surface model (qms) with a v�� � of 2900 m/s, the solid line for the simplified model
with v�� � of 2400 m/s and the dashed dotted line for a thermal beam. Detuning: 120
cm�

�
,
���� � 
� ���.

In order to prove the described assumptions an experiment isarranged equivalent to the
determination of the neon velocity (subsection 2.5.1). In figure 2.13 measured velocity
distributions of sodium before and after the collision withH� molecules are shown.
The three curves are calculated velocity distributions forcollisions with a thermal mo-
del, the simplified model and the quitting surface model for the target gas beam. The
noticeable shoulder is due to ambiguities in the collisional geometry of the NaH� sy-
stem and not caused by the shape of the H� or Na velocity distributions.
The curve for the simplified model fits most satisfactory. Taking into account the error
statistics of the experimental data this means that the simplified approach seems to be
the most likely. An indirect determination of the H� velocity, like for Ne is not possi-
ble with reasonable error margins. The velocity values calculated with the simplified
quitting surface model are quoted in table 2.9. The error margins of the calculated ve-
locities are determined by the accuracies in the determination of the gas temperature
and of the pressure. Including the experiences with atomic targets (2400� 100) m/s
for H� and (1700� 70) m/s for D� are reasonable estimates for the molecular veloci-
ties and the accuracy in their determination.
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Figure 2.14:Principle of detection. Left: The schematic design of the Rydberg detector
(top) with the appropriate impressed electric potentials of the meshes (bottom). Right:
The detection scheme demonstrated by the belonging potential energies, the collisional
complex is excited by the first photon, then transfered into aRydberg state, field ionized
and detected in the channeltron.

2.6 Differential detection

The alkali atoms are in the first excited p-state after the optical collision. The lifetimes
of the excited Li(2p) and Na(3p) atoms are in the order of a fewnanoseconds [74].
In the relevant velocity regime (400 - 3600 m/s) the particles would not be able to
leave the scattering volume before decaying into their ground states. The detection
laser photons transfer the excited alkali atoms in Rydberg states.

�� ��	 	 � ��� �� �� �� �	
(2.7)


� ��	 ��� ���� 	 � ��� �� 
� �� �	

The lifetimes of the Rydberg states are orders of magnitude longer than of the first ex-
cited p-states. The collisions between Rydberg atoms and the background gas particles
are causing inelastic changes of the angular momentum quantum number l which pro-
long the lifetime of the Rydberg atoms [58, 50]. The Rydberg atoms reach the detector
and are ionized by an electric field.
In figure 2.4 an overlap of the Na(3p��� � 31d) and the Na(3p��� � 35s) transiti-
ons and a rising of a 2-photon line (see equation 2.3) at 410.33 nm is observable. The
signal amplitude of this process is orders of magnitude higher than the signal of opti-
cal collisions. The wavelength of the detection laser has tobe chosen carefully. Only
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detached lines with high signal intensity like for example the


� ��	 ��� 	 � ��� �� 
� ���� 	

transistion are used as detection lines for the later on described experiments.
The design of the detector is shown in upper left part of figure2.14. The Rydberg
atoms pass an aperture (Na����� �� : 15 mm � 1.5 mm; Na�

��� �
��� � � : 20 mm � 3.0

mm; Li: 30 mm � 3.0 mm) and a composition of nickel meshes with different elec-
tric potentials (lower left part of figure 2.14) in respect tothe ground potential of the
vacuum recipient . The first and the fourth mesh are on positive potentials (+60 V and
+100 V) in order to repel positive ions which might be presentin the recipient. The
electric field between the first and the second mesh (170 KV/m)is strong enough to
field ionize Rydberg atoms of quantum numbers higher than n=15 [75]. The ioniza-
tion takes place close-by the first mesh. The ions produced inthe ionization volume
have to be guided onto the entrance of a channeltron [76], because the channeltron is
not visible for the neutral projectile particles in order toavoid the deposition of alkali
atoms. The entrance of the channeltron itself is on a high negative potential (-2.7 KV)
to attract the ions and to repel electrons which might enter the detector. Around 70 %
of the produced Rydberg atoms reach the detector and 70 % of those are detected by
the channeltron [58, 50]. The resulting total efficiency of the detection scheme is 50 %
of the arisen Rydberg atoms.
In order to determine the velocity of the scattered alkali atoms, the time of flight from
the scattering volume to the ionization volume at the first mesh has to be measured.
The distance is (70� 0.3) mm. The time zero point is in the moment when the detec-
tion laser illuminate the scattering volume and the Rydbergatoms are produced. It is
determined by a photodiode in the detection laser. A multichannel analyser PC-Card
[77] (MCD-2 card) measure the time difference t between the photodiode pulse and the
amplified pulse orginated in the channeltron. t has to be corrected for all time delays
orginated in running times of the electric pulses in the cables, processing times in the
preamplifier, differences in processing times in the MCD-2 card and the travel time of
light from the laser to the scattering volume. All delays sumup to 68 ns. The real time
of flight t

�
is �� � � � � � � ����  (2.8)

where t� is the time of flight of the ions in the detector, which is different for Li (461
ns) and Na (840 ns). t� is calculated with the software package SIMION [78] by simu-
lating the pathways of ions inside the detector.The uncertainties in the time determina-
tion sum up to an uncertainty of� 80 ns of t

�
leading to� 0.1 % accuracy in velocity

determination for Na (1000 m/s) and� 0.3 % for Li (2400 m/s). The inaccuracy in the
path length causes additional 0.4 % for Li and Na. The total uncertainty of the scatte-
red projectile velocity is� 0.5 % for Na and� 0.7 % for Li.
The detector is mounted on a swivel arm. The relative reproducibility of the swivel
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experimental quantities section error margin

detuning 2.2 Li:�0.17 cm�
�

Na:�0.15 cm�
�

polarization angle 2.2 � � ���
velocity distribution of the target beam 2.5 v�� �:(1701�50) m/s
before the collision v�� �: (762�20) m/s

v�� � : (2413�100) m/s
v�� � : (1714�70) m/s

velocity distribution of the projectile beam 2.4
�

v �6 %
before the collision
dimension of the scattering volume: distance 2.2 �0.1 mm
angle 2.6 � � �
�
dimension of the aperture of the detector 2.6 �0.1 mm
geometrical sizes and distances 2 � 0.3 mm
different time of flights of different 2.6 Li: (461�80) ns
projectile ions in the detector Na. (840�80) ns
resolution of the velocity of the 2.6 Na:�0.5 %
scattered atoms Li: �0.7 %
position of the detector 2.6 absolute:� � ���

relative:�� ��� �
determination of the scattering angle 2.6 � � ���
angle between target and projectile beam 2.6 � � ���

Table 2.10: Relevant experimental quantities to determinethe apparatus function and
the appendant error margins.

arm position is better than 0.04
�
. The scattering angle is the angle between the forward

direction of the projectile beam and the axis of the detector. The determination of the
foward direction has an accuracy of 0.3

�
(section 2.4). An additional error of�0.1

�

is caused by the error margin of the position and size of the scattering volume (�0.1
mm). The total uncertainty in the scattering angle is� 0.3

�
.

The angle between the projectile and the target beam is measured for the experiments
in chapter 3 because it depends on the beam sources and their mounting and can vary
up to 2

�
. Using an extra 0.8 mm� 8 mm aperture the direction of the alkali beam

is measured equivalent to the foward direction measurement2.4. The direction of the
target beam is determined by changing the Rydberg detector with an ionisation gau-
ge keeping the extra aperture. The total uncertainty of the angle between the beam is
mainly caused by the accuracy in the determination of the target beam direction and is
about� 0.3

�
. In table 2.10 the relevant experimental quantities to compare the theo-

retical with the experimental results and the appendant error margins are centralised.
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2.7 Control of the experiments

The whole experiment is controlled automatically by a computer using programs writ-
ten in LabView from National Instruments [79]. The computeris able to switch the
target beam on or off by controlling the pulsed nozzle, to change the repetition rate
and the number of laser shots, to conduct step motors in orderto vary the detection
angle by rotating the detector, to alter the wavelength of both lasers by tilting the gra-
tings, to change the polarization plane of the lasers by turning each of the two Fresnel
rhombs or to vary the elliptic polarization by turning one Fresnel rhomb and the�/4
plate. The communication between the computer and the dye-lasers is done by a GPIB
interface (National Instruments PCI-GPIB+). The other hardware is connected with
the computer via a DaqBoard from IOTech [80].
In order to run the later described experiments it is necessary to create and use different
control files for different applications. At the beginning the relevant physical parame-
ters of each data point (like detector position, polarization, number of laser shots, etc.)
are set. The events counted by the detector are distributed time resolved to the 4096
channels of a multichannel analyzer PC-Card (MCD-2 card)[77]. Each channel corre-
sponds to a time interval of 125 ns. The computer reads out thechannels after every
data point and sorts the events into velocity classes (up to 28 with a width of 50 m/s -
200 m/s). Then the physical parameters of the next data pointare adjusted. The measu-
rement is stopped after a given number of data points or runs in a loop until it is stopped
manually. During the measurement the experimental data is automatically transferred
to another computer after a given number of data points. Further analysis allows an
observation of the counting statistics and to evaluate the quality of the measurement.
At data points with an expected low signal intensity a highernumber of laser shots
is programmed to have a nearly equal counting statistic overthe whole range of the
measurement. Typical loops are programmed in a way that whenall data points with
the appropriate settings are measured, the order of the datapoints is measured back-
wards again. The feasible slight linear decrease of the laser intensity and its effect to
the signal intensity is averaged out by this kind of loop. Additionally the adjustment is
always controlled and if necessary corrected during longtime measurements in order
to measure in the optimal working range of a specific experiment.

2.8 Disturbing processes and corrections

2.8.1 Disturbing processes

The measured entire signal of the later on described experiments (chapter 3) is a com-
position of the real signal and background signal. Typical signal intensities of 0.01 -
0.2 counts per laser shot are to small to deal with high background signal. The signal
intensity should, apart from saturation effects, depend linear from the intensities of the
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excitation laser, the detection laser, the sodium beam and the target beam (equation
2). Observed nonlinearities are an indication for the following competing processes
discribed in [58, 51]:

1. Collisions with alkali dimers

2. Excitation with resonant light

3. Direct 2-photon detection

4. Detection during the collision

5. Hyper-Raman excitation

6. Alkali-alkali optical collisions

The contributions to the background signal of most of the above mentioned processes
can be and are reduced significantly (like processes 1. - 4.) by the right choice of the
experimental parameters and modications in the experimental set-up. The resulting er-
ror margins are small compared to the statistical error of the entire signal. Due to the
quadratic dependence of the background signal on the excitation laser intensity (pro-
cess 5.) or the alkali particle density (process 6.) in the scattering volume the fraction
of the background signal of the entire signal can be reduced decreasing the intensity of
the laser (process 5.) or of the sodium (process 6.) beam. However, the signal intensity
is decreased, too. Thus the reduction is limited. The optimal working conditions are
always a compromise between moderate signal and a small background.
The background signal is minimized in a way that all remaining contributions to the
entire signal sum up to less than 25 %. The entire signal then has to be corrected in
respect to the underlying processes.

2.8.2 Methods of correction

In order to subtract the background signal caused by the remaining processes, all mea-
surements are done with (S�) and without target gas (S� �). The background signal is
dominated by the processes 5. and 6. which do not need target particles. A systemati-
cal error is introduced not taking into account the elastic scattering of the background
signal with the target gas. For the alkali-alkali process the resulting error is small (�
5% of the background signal caused by this process) because the angular distribution
of the process is already broad [58]. For the hyper-Raman it has to be corrected. S� �
is in a small area around (���) the forward direction dominated by the hyper-Raman
(S�� ) and for bigger scattering angles by the alkali-alkali process (S�� ). S�� can be
interpolated for small scattering angles from the broad angular distribution of S� � .
The distribution of hyper-Raman process can assumed to be like the distribution of the
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direct 2-photon process. Thus the angular distribution of a2-photon photon process is
measured with and without target particles. The detected signal without gas in forward
direction (S� ��) subtracted by the interpolated value of S�� in forward direction (S���)
is divided by the signal in forward direction of the 2-photonpeak without gas (2P� � �)
and multiplied with the angular distribution of the 2-photon signal with gas (2P� ), the
resulting distribution is the elastic scattered contribution of the hyper-raman process to
the background signal:

�
� �� 	 � �� �� � �		�
��� ��

�� � �� 	 (2.9)

It has to keep in mind that S�� �� 	 is for all but small scattering angles in the order of
less than 2 % of S� �� 	 for the here presented measurements.
The background corrected signal S(

�
) is:

� �� 	 � �� �� 	 � �		 �� 	 � �
� �� 	 �
(2.10)

The effect of angular momentum stabilization of the Rydbergatoms described in secti-
on 2.6, might cause a systematical error in this background correction procedure due to
the fact that the background signal is stabilized by the target gas as described in [63].
In this work no significant stabilization effect is observedfor the used target gases.
As can be seen for the example in figure 2.9, the 2-photon signal in forward direction
without gas is minimal higher than the 2-photon signal with gas. For scattering angles
greater than 2

�
it is vice versa. This is the expected behavior due to elasticscattering

of the alkali atoms with the target particles.
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Chapter 3

Results and discussion

3.1 General introduction

In this chapter experimental and theoretical determined differential cross sections of
the collisional pairs LiHe, LiNe, LiH�, LiD � and NaNe for various detunings and po-
larizations of the excitation laser are presented in order to probe molecular potentials
and to observe and to manipulate the collision processes.
The notation for all graphs is equivalent. Each graph of a figure belongs to a velocity
class of the scattered alkali atoms. If the velocity is labeled, it is the medial velocity
of the class. The circles represent the experimental data. Their error bars denote�
one standard deviation of the counting statistics. The background signal is subtracted
as described in section 2.8.2. The presented theoretical determined cross sections are
all convoluted with the corresponding apparatus function of the experiment (section
1.1.3). They are diagrammed as lines. Different line stylesbelong to different underly-
ing potentials.

3.2 Probing of molecular potentials by measuring dif-
ferential cross sections

3.2.1 LiNe and LiHe

The optical collisions of lithium with different atomic targets (He, Ne) are examined.
The differential cross sections for a positive detuning of 241.7 cm�

�
from the Li(2s

- 2p) resonance and 24 velocity classes of the scattered lithium were measured and
shown in figures 3.1 - 3.4. The width of the velocity classes is75 m/s for LiNe and 100
m/s for LiHe. The polarization of the excitation laser is fixed. The detected state is the
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Figure 3.1:Differential cross sections of LiHe as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities. The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory calculated with underlying potentials from [18]
(solid lines) and [19] (dashed lines).
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Figure 3.2:Differential cross sections of LiHe as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities. The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory calculated with underlying potentials from [18]
(solid lines) and [19] (dashed lines).
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Figure 3.3:Differential cross sections of LiNe as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory.
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Figure 3.4:Differential cross sections of LiNe as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities. The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory.
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Figure 3.5:The molecular potentials for the ground and first excited states of LiHe
and LiNe. Left side LiHe: solid lines [18], dashed lines [19]; right side LiNe [20]. The
excitation photon energy of 241.7 cm�

�
is added to the X

��
-states.

Li(2p)-state. The fine structure split between Li(2p���) and Li(2p���) is to small to be
resolved.
The differential cross sections show interference structures. The number of oscillations
per scattering angle decreases with decreasing velocity. For the high velocities of Li-
He the signal disappears appart from noise due to the error statistics for big scattering
angles, these angles are classical forbidden due to kinematic considerations.
In figure 3.5 calculated molecular potentials for LiHe by Staemmler et al. [18] (solid
lines) and by Czuchaj [19] (dashed lines) (left graph) and for LiNe by Kerner [20]
(right graph) are shown. The photon energy is added to the ground state potential for
both collision pairs. The solid lines in figures 3.1 - 3.2 and 3.3 - 3.4 represent the theo-
retical determined cross sections based on the Staemmler and Kerner potentials. The
theoretical results are for both collisional systems in very good agreement with the
experimental data.
The oscillatory structures form a sensitive probe of the potential curves [13] in the ran-
ge between the Condon radii (LiHe: 9 a.u., LiNe: 8 a.u.) and the inner turning points
(5 - 6 a.u.) of the particles. In order to probe the accuracy ofthe underlying potentials
trial corrections to the X

��
and B

��
potentials are done in a range from 4 to 10 a.u.

Outside of this domain their shape is not modified. The corrections are constructed in
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Corrections to the LiHe and LiNe potentials
X

��
error position B

��
error position

LiHe +5.8 cm�
�

� 8 cm�
�

6.0 a.u. -0.5 cm�
�

� 14 cm�
�

7.0 a.u.

LiNe -1.4 cm�
�

� 4 cm�
�

6.0 a.u. +3.0 cm�
�

� 9 cm�
�

7.0 a.u.

Table 3.1: Maxima of the calculated correction function of the LiHe and LiHe poten-
tials with the belonging errors and sampling point positions.

the form of Hermitian spline functions. The variation is done at given sampling points
at 4, 6 and 10 a.u. for the X

��
and 4, 7 and 10 a.u for the B

��
potentials. The ma-

xima are at 6 and 7 a.u. respectively. Only the amplitude of the correction functions is
modified, their form is not varied. A least-squares-procedure [13] is used to find the
best agreement between the experimental and the theoretical cross sections. The cross
sections of 20 different velocities classes are used for thefits of LiHe and LiNe. This
leads to the in table 3.1 quoted corrections to the potentialcurves. The errors estima-
tion includes the experimental uncertainties (table 2.10)and the statistical error of the
fit. The calculated variations of the potentials and the corresponding differential cross
section are not shown in the figures 3.5 and 3.1 - 3.4 because the small deviations
would be hardly visible.
The sensitivities for the X

��
and B

��
curves are comparable. Due to the fact that

the underlying experimental data sets are for only one detuning, the corrections are
given in a fixed form. This is in contrast to [13] where a large data set for the collision
pair KAr with different detunings is much more sensitive to the detailed form of the
potential curves and allow to improve the given calculated potentials. The results for
LiHe and LiNe show that the presented experimental data still confirm an accuracy in
the order of 10 cm�

�
of the calculated potentials. However, this does not mean that

there are no existing other potentials out of the described accuracy range.
The dashed lines in figures 3.1 and 3.2 are cross sections calculated with an older
underlying LiHe potential by Czuchaj [19] the accordance isslightly worse. The posi-
tions of the 2. maxima deviate up to 4

�
from the experimental ones. One would expect

a bigger variation in the cross section because the variation in the potential curves rises
up to 500 cm�

�
for the B

��
curve and up to 200 cm�

�
for the X

��
potential curve in

the relevant internuclear distance range. The described method is more sensitive to the
difference between the relevant potential curves and theirshape than to the potentials
itself. The relevant potential curves for LiHe have nearly the same shape, they proceed
almost parallel. The sensitivity rises also with the numberof oscillations per scattering
angle, which is small for the used detuning. These argumentsmight be an explanation
for the small aberrations in the differential cross sections and show up the borders of
the described method.
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3.2.2 LiH� and LiD�
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Figure 3.6:Differential cross sections of LiH� as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities. The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory.
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Figure 3.7:Differential cross sections of LiH� as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities. The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory.
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Figure 3.8:Differential cross sections of LiD� as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities. The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory.
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Figure 3.9:Differential cross sections of LiD� as a function of the laboratory scattering
angle

�
multiplied by sin(

�
) for different velocities. The vertical numbers at the left

(left column) and right (right column) sides of the graphs indicate the appropriate
velocity of the lithium after the collision in m/s. The detuning is 241.7 cm�

�
. Circles:

Experimental data. Curves: Theory.

59



5 10

                       internuclear distance [a.u.]

15000

16000

p
o

te
n

ti
a

l 
e

n
e

rg
y
 [

c
m

−
1
]

5 10

3
2
A’ 3

2
A’

X
2
A’

X
2
A’

2
2
A’’

1
2
A’, 2

2
A’’ 1

2
A’

Figure 3.10:The molecular potentials for the ground and first excited states of LiH�

(LiD�) [40]. The excitation photon energy of 241.7 cm�
�

is added to the 3
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A
�
-states.

The left graph refers to the collinear and the right to the T-shaped geometry as indi-
cated with the icons. The dashed lines correspond to the B

��
and the shifted X

��

potential curves of LiHe [18] as labeled in figure 3.5.

The experimental conditions for LiH� and LiD� are the same as described for LiHe in
subsection 3.2.1.
The experimental determined cross sections for both collision pairs are presented in
figures 3.6 - 3.9. The shapes of the experimental determined cross sections are quite
astonishing. They show clear oscillatory structures. Thisis a well-known feature for
atomic targets (section 1 and e.g. [46]). For molecular targets like N� , O�, C�, CO and
CO� the observed differential cross sections are usually simply decreasing to higher
scattering angles (see [63]).
In figure 3.10 calculated LiH� [40] potentials (solid lines) are shown. In order to cal-
culate the LiH� surfaces the H atoms are kept at their equilibrium distance.The figure
shows cuts for� = 0

�
(collinear geometry) and 90

�
(T-shaped geometry), where� is

the angle between the H� axis and the direction of the connecting line between the cen-
ter of the H� molecule and the Li atom. The surfaces apply for LiD�, too. The dashed
lines represent the LiHe potential curves calculated by Staemmler [18]. The photon
energy is added to the ground state potential for all collision pairs.
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Figure 3.11:Li detuning: 241.7 cm�
�

: rows: Differential cross sections of LiHe (top
row) and LiD� (bottom row) as a function of the laboratory scattering angle

�
mul-

tiplied by sin(
�
). The columns refer to different Li velocities after the collision as in-

dicated in the graphs. The detuning is 241.7 cm�
�
. Circles: Experimental results, the

error bars indicate one standard deviation. Lines: Theoretical results calculated with
the potentials shown in the figures 3.5, 3.10.

The cross sections for the LiH� and LiD� collision pairs are calculated by a rotational
sudden approach (e.g. [45]). The distance between lithium atom and the H� molecule
and the D� molecule respectively varies during the collision, but theangle� is kept
fixed, suppressing the angular variation of the potential surface due to the molecular
rotation. The interference pattern of the cross sections isgoverned by the phase dif-
ference, which primarily depends on the shape of the potentials inside the Condon
radius. Even for an overestimated rotational temperature of 100 K the variation of�
during the crucial part of the collision is only 20

�
. This variation is determined by

classical trajectory calculations described in [81]. The amount of the variation of� is
small enough to be negligible for a first approximation. The cross sections are calcu-
lated for seven angles� (0

�
, 15

�
, 30

�
, 45

�
, 60

�
, 75

�
, 90

�
). The oscillatory structures

vary considerably with the value of�. The number of oscillations per scattering angle
rises to higher values of�. Geometrical reasons lead to the fact that angles near� =
90

�
(T-shaped geometry) are more likely than smaller angles especially near� = 0

�

(collinear geometry), so the final cross section is built as an average over�, with a
geometric weight factor sin(�). Due to the weight factor the resulting positions of the
maxima of this average cross section are very close to the ones of the T-shaped geo-
metry. The calculated cross sections of figures 3.6 - 3.9 are in good agreement with
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the experimental data. The experiences with atomic collision pairs allow to estimate
necessary corrections of the shape of the calculated potentials in the order of 50 cm�



.

It attracts attention that the interference maxima of the LiD� cross sections are at nearly
the same scattering angles as those of LiHe, even the shape ofthe oscillation structures
is very alike (figure 3.11). As the experimental conditions are comparable, the target
masses are identical and the target velocities are similar,this gives a hint for a cor-
responding similarity of the centre-of-mass cross sections and so of the underlying
interaction potentials. The dashed lines in figure 3.10 represent the X

��
and the B

��

potential curves of LiHe [18]. The LiHe ground state potential is very close to the LiH�

(LiD �) ground state potential. This holds over the whole internuclear distances which
are probed here. The B

��
and the 3

�

A
�
potential curves are for the T-shape geometry

nearly identical and for the collinear geometry the form is alike, too. This confirms the
expected affinity of the relvant LiHe and LiH� potentials.

3.2.3 NaNe

The optical collision pair NaNe is well analyzed for positive detuning [12, 51]. In this
work NaNe is investigated for the first time with a negative detuned excitation laser.
The detuning is - 299.7 cm�

�
in respect to the Na(3s - 3p���) resonance. The detection

transition is: Na(3p���) � Na(34d). Cross sections for 5 velocity classes and 6 diffe-
rent polarizations of the excitation laser were measured and are shown in figure 3.12.
The columns correspond to the different velocity classes. The width of the velocity
classes is 200 m/s. The medial velocity is labeled at the leftside of the columns. The
rows represent the polarizations with respect to the sodiumbeam direction as labeled
on bottom of the rows. The error bars denote� one standard deviation of the counting
statistics. The wide variety of different interference structures will be discussed quali-
tatively in the next section 3.3.1.
The solid lines represent the theoretical cross sections. They rely on quantum chemi-
cal determined potentials [20], which are diagrammed as solid lines in figure 3.13.
The dashed lines are cross sections based on the spectroscopically determined A

��

potential from [21] which is shown as dashed line in figure 3.13. The agreement bet-
ween experimental and quantum chemical cross sections is excellent for all velocities
and polarizations. The cross section relying on spectroscopical data seriously disagree
with the experiment.
The accuracy of the quantum chemical potential seems to be very good. The spectros-
copical determined potentials are wrong. In order to decideif the different depths of
the quantum chemical and spectroscopic A

��
minima or the discrepancy in the repul-

sive A
��

branches have caused the disagreement with the experiment,the effect of
trial modifications (section 3.2.1) to the quantum chemicalpotentials is investigated.
The agreement between experimental and calculated cross sections is still good if mo-
difications in the order of 30 cm�

�
are added to the X

��
potential curve. An analogue
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Figure 3.12:NaNe detuning: -299.7 cm�
�

: Differential cross sections of NaNe as a
function of the laboratory scattering angle

�
multiplied by sin(

�
). The columns belong

to different polarization directions of the excitation laser with respect to the Na beam
direction (left column to right column: -63

�
, -33

�
, -3

�
, +27

�
, +57

�
, +87

�
). The rows

belong to different velocities of the sodium after the collision (top to bottom: 1300
m/s, 1100 m/s, 900 m/s, 700 m/s, 500 m/s). The detuning is -299.7 cm�

�
. Circles:

experimental data. Solid lines: theory with the potentialsfrom [20]. Dashed lines:
theory with the spectroscopical determined A

��
potentials from [21].

modification of the repulsive branch of the A
��

curve has no destinct influence eit-
her. If the A

��
potential is modificated 30 cm�

�
near the minimum the resulting cross

sections show a significant disagreement to the experimental ones, similar to the cross
sections calculated on the base of the spectroscopical determined potentials.
This leads to the conclusion that the scattering data is particulary sensitive to the at-
tractive part of the A

��
curve, and that the spectroscopic data certainly underratethe

depth of the minimum. In difference to the in subsection 3.2.1 and [13] described ap-
plications where the cross section data is found to be equally sensitive to the repulsive
ground and excited state potential curves, it seems that forthe used experimental con-
ditions the sensitivity to the attractive A

��
curve is much higher than to the repulsive

X
��

curve.
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state curve.

3.3 Observation and manipulation of atomic collisions
by laser polarization

3.3.1 Observation

Former applications [83] have shown the possibility to extract all the classical geome-
trical information of the collision from the experimental data, because it is stored in
the interference structure. This is comparable to optical holography, where an image is
reconstructed from an interference pattern. The describedapplication was done for po-
sitive detuning and two Condon vectors.The presented measurements for NaNe should
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Figure 3.14:NaNe detuning: -299.7 cm�
�
, the Na velocity after the collision is 1100

m/s. Left column: Differential cross sections for varying linear polarizations as a func-
tion of the laboratory scattering angle

�
multiplied by sin(

�
). Right column: Condon

vectors and classical trajectories for the laboratory scattering angle of 16
�
. The size

of the diagram is 16� 16 a.u.. The dashed lines represent the polarization direction
used in the experiment. The numbers are the angles between the polarization and the
Na beam direction.
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Figure 3.15:NaNe detuning: -299.7 cm�
�

the Na velocity after the collision is 700 m/s.
Left column: Differential cross sections for varying linear polarizations as a function
of the laboratory scattering angle

�
multiplied by sin(

�
). Right column: Condon vectors

and classical trajectories for the laboratory scattering angle of 16
�
. The size of the

diagram is 20� 20 a.u.. The dashed lines represent the polarization direction used in
the experiment. The numbers are the angles between the polarization and the Na beam
direction.
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be used to determine the collisonal geometry of optical collisions with negative detu-
ning. However, the appearance of up to four Condon vectors makes the analysis more
complicated and demands further development of the fitting procedure described in
[83].
The experimental and theoretical data of NaNe described in section 3.2.3 is now used
to understand the collision geometry and effects of the variation of the polarization of
the excitation laser qualitatively.
In figure 3.12 can be seen that the oscillatory structure in the differential cross sections
seriously depend on the polarization of the excitation laser, for some polarizations the
oscillations even vanish. There is also an evolution from high regularity to reduced
regularity of the oscillatory structure from higher to lower velocity.
To better explain these effects the graphs for two velocity classes (700 m/s, 1100 m/s)
are enlarged and diagrammed in the left columns of the figures3.14 and 3.15. The
right columns illustrate the classical trajectories for the relative motion with the Con-
don vectors and the polarization (dashed line) calculated for a laboratory scattering
angle of 16 degree. The illustration is analog to figure 1.10.
As explained in section 1.2.2 the oscillatory structure in the differential cross section
undergoes a strong variation with varying polarization. Inthe present case of a

�
-
�

the transition dipole momentd is orthogonal to the Condon vectorsr� (section 1.1.1).
For 1100 m/s the maximum signal with the highest contrast appears at -3

�
whereE is

nearly orthogonal to both of the Condon vectors. The contrast is getting smaller until
the oscillatory structure vanishes for the polarization of-63

�
and 87

�
. In these casesE

is nearly parallel to one of the Condon vectors. With furtherturning of the polarization
the contrast is rising until it reaches its maximum again.
Strongly attractive trajectories occur at low velocities (section 1.2.1) as can be seen
in the graphs for 700 m/s. Now four trajectories contribute to the signal leading to a
lower regularity in the interference structure. The distance between the maxima and
the contrast varies within the data for one polarization. Even for four Condon vectors
the oscillatory structure vanishes for a polarization of 87

�
. One explanation might be

that the relative weights of the repulsive trajectories arein this case higher than the
weights of the attractive trajectories and so the dominant contributions to the signal
are nearly switched-off. Also it has to be taken into accountthat some of the resulting
oscillations have a very small distance from maximum to maximum and are not resol-
ved under the conditions of the experiment [46].

3.3.2 Coherent control

The in section 1.2.2 described possibility to have completecontrol over the interference
pattern of an optical collision should be demonstrated. It is planned to observe an
continuous shift of an interference pattern by the right choice of the control parameter�

(equations 1.21 and 1.22 ). For this task differential crosssections of the NaNe
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Figure 3.16:NaNe: detuning: 120 cm�
�
; the Na velocity after the collision is 1225

m/s. Left column: differential cross sections as a functionof the laboratory scattering
angle

�
multiplied by sin(

�
). The vertical scales of the graphs are different. Filled

circles: experimental results, the error bars indicate onestandard deviation. Curves:
theoretical results calculated with the potentials shown in figure 3.13. The large hollow
circles are the positions of the maxima. The straight lines crossing the graphs are a
help to guide the eye. Right column: The elliptic polarization, the Condon vectors and
the resulting value of the control parameter

�
.
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system are examined. The detuning is 120 cm�
�

in respect to the Na(3s - 3p���) re-
sonance. The detection transition is: Na(3p���) � Na(34d). Cross sections were mea-
sured for scattering angles between 9.9

�
and 30.6

�
, 6 different control parameters

�
(30

�
, 90

�
, 150

�
, 210

�
, 270

�
, 330

�
) and for 3 velocity classes (1075 m/s, 1225 m/s,

1375 m/s). The width of the velocity classes is 150 m/s. The control parameters are
calculated for a sodium velocity after the collision of 1225m/s and a laboratory scatte-
ring angle of 21.6

�
(reference conditions). The appropriate elliptical polarizations valid

strictly speaking just for this scattering angle and velocity, however, the error made by
this approximation is small. All relevant calculations regarding this approximation and
possible sources of error are described in [55].
In the left row of figure 3.16 the differential cross sectionsfor 1225 m/s are presen-
ted. The vertical scales are different in order to emphasizethe continuous shift of the
interference pattern. The top graph is repeated at the bottom. The positions of the ex-
perimental maxima are marked by hollow circles. The straight lines are for guiding
the eye. The columns correspond to the different control parameters

�
, their values

are labeled to the right. The right row shows the appropriateelliptical polarizations
of the excitation laser in respect to the Condon vectors for ascattering angle of 21.6�
. Looking along the straight lines which connect the graphs it is easily seen that the

whole interference pattern is continuously shifted to higher scattering angles for a ri-
sing control parameter. For example in the graphs of

�
= 150

�
and

�
= 330

�
the angular

positions of the maxima and minima have changed due to the phase difference
� �

of
180

�
. The solid lines in the graphs represent the theoretical cross sections. The agree-

ment between calculated and experimental data is good, especially the positions of the
theoretical and experimental determined interference maxima fit very good.
In figure 3.17 the graphs for all three velocity classes are shown. The rows correspond
to the different velocity classes and the columns representthe different elliptical po-
larizations as introduced in figure 3.16. The correspondingcontrol parameters

�
are

labeled to the right of each column. The solid lines represent the theoretical cross sec-
tions. All graphs have the same scale. The experimental cross sections for the other
velocity classes (1075 m/s and 1375 m/s) show a shifting of the interference pattern,
too. The agreement between calculated and experimental data is good. In figure 3.17
the quantitative agreement between experimental and theoretical data is very good for�

= 150
�
, 210

�
and 270

�
and good for 90

�
. The contrast in the theoretical determined

cross sections for
�

= 30
�

and 330
�

is larger than the contrast of the experimental data.
This might come from some broadening mechanisms not fully taken into account in
the convolution scheme [55]. The qualitative agreement is for all measurements very
good.
Figure 3.18 illustrates the positions of the maxima of the experimental (filled circles)
and theoretical (diamonds) differential cross sections offigure 3.17 as function of the
control parameter

�
. The three graphs belong to the velocity classes as labeled at their

top. The angular position of the interference maxima clearly move linearly with the
control parameter for all velocities. The linear fits are thedashed lines. For the refe-
rence velocity (1225 m/s) the deviations from linearity arein the order of�0.3

�
. The
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theoretical determined positions of the maxima typically deviate less than 0.5
�
from the

experimental determined ones. For the other velocities thedeviations are slightly big-
ger which might caused by the error in the determination of the control parameter. The
by the choice of the control parameter planned linear shift of the interference fringes
is impressively performed. The described experiment demonstrate the total control of
an atom-atom collision. The control is complete because anydesired angular position
and contrast of the interference pattern can be adjusted. However, the finite resolution
of the experimental apperatus limits the possible values ofthe contrast.
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Summary

The optical excitation of alkali-atom and alkali-moleculecollision pairs was investi-
gated in a crossed beam experiment with differential detection. The exciting light was
used to study and to manipulate the collision event.
Collisional systems with Li as projectile atom were examined for the first time with
this method. The accuracies of the repulsive parts of the ab initio calculated LiHe and
LiNe X

��
and B

��
potentials were probed investigating the interference structure of

the optical collision cross sections. The experimental andtheoretical differential cross
sections are in very good agreement for the LiHe and LiNe systems. The uncertainties
of the repulsive parts of the calculated X

��
and B

��
potentials are estimated of the

order of 10 cm�
�
. The present analysis probes the overall behavior of the potential

curves. In order to get a better insight in the details of their form an analysis of a set of
differential cross sections for different detunings is desirable.
The differential cross sections of the LiH� and LiD� systems also show, quite surpri-
singly, an oscillatory structure. The agreement between experimental and theoretical
data is good. This legitimates the theoretical descriptionof the collision by a rotatio-
nal sudden method, where the alignment of the target molecule is frozen during the
collision. Taken into account the experiences with atomic systems the good agreement
also points to an accordant accuracy of the two repulsive

�� �
potentials like for the

LiHe and LiNe systems. Corrections in the order of 50 cm�
�

seem to be a reasonable
estimate.
The attractive part of the NaNe A

��
potential was investigated. The very good agree-

ment between the experimental and theoretical cross sections calculated with recent
quantum chemical potentials indicates a high accuracy of the underlying potentials.
Previous spectroscopical data are found to underestimate the depth of the well of the
A

��
potential.

The interference pattern of the differential cross sectionof the NaNe system for nega-
tive detuning show a strong dependency on the polarization of the exciting light. The
oscillatory structure even vanish for some linear polarizations. The extraction of the
geometric information of the collision, like Condon vectors and the relative weight of
the corresponding trajectories is not managed, yet.
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The control of an atom-atom collision is demonstrated for the NaNe system. By the
right choice of the elliptical polarization, interferencemaxima of differential cross sec-
tions can be shifted to any angular position. Within the borders of a finite experimental
resolution the contrast of the interference pattern can be given any value between 0 and
1. The exploitation of the polarization of the excitation laser light appears as a simple,
powerful tool for the control of collisional processes.
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